Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Genomics & Informatics ; : e36-2018.
Article in English | WPRIM | ID: wpr-739677

ABSTRACT

Next generation sequencing (NGS), a high-throughput DNA sequencing technology, is widely used for molecular biological studies. In NGS, RNA-sequencing (RNA-Seq), which is a short-read massively parallel sequencing, is a major quantitative transcriptome tool for different transcriptome studies. To utilize the RNA-Seq data, various quantification and analysis methods have been developed to solve specific research goals, including identification of differentially expressed genes and detection of novel transcripts. Because of the accumulation of RNA-Seq data in the public databases, there is a demand for integrative analysis. However, the available RNA-Seq data are stored in different formats such as read count, transcripts per million, and fragments per kilobase million. This hinders the integrative analysis of the RNA-Seq data. To solve this problem, we have developed a web-based application using Shiny, COEX-seq (Convert a Variety of Measurements of Gene Expression in RNA-Seq) that easily converts data in a variety of measurement formats of gene expression used in most bioinformatic tools for RNA-Seq. It provides a workflow that includes loading data set, selecting measurement formats of gene expression, and identifying gene names. COEX-seq is freely available for academic purposes and can be run on Windows, Mac OS, and Linux operating systems. Source code, sample data sets, and supplementary documentation are available as well.


Subject(s)
Computational Biology , Dataset , Gene Expression , High-Throughput Nucleotide Sequencing , Transcriptome
2.
Genomics, Proteomics & Bioinformatics ; (4): 269-275, 2018.
Article in English | WPRIM | ID: wpr-772980

ABSTRACT

Hepatocellular carcinoma (HCC) is highly heterogeneous in nature and has been one of the most common cancer types worldwide. To ensure repeatability of identified gene expression patterns and comprehensively annotate the transcriptomes of HCC, we carefully curated 15 public HCC expression datasets that cover around 4000 clinical samples and developed the database HCCDB to serve as a one-stop online resource for exploring HCC gene expression with user-friendly interfaces. The global differential gene expression landscape of HCC was established by analyzing the consistently differentially expressed genes across multiple datasets. Moreover, a 4D metric was proposed to fully characterize the expression pattern of each gene by integrating data from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx). To facilitate a comprehensive understanding of gene expression patterns in HCC, HCCDB also provides links to third-party databases on drug, proteomics, and literatures, and graphically displays the results from computational analyses, including differential expression analysis, tissue-specific and tumor-specific expression analysis, survival analysis, and co-expression analysis. HCCDB is freely accessible at http://lifeome.net/database/hccdb.


Subject(s)
Humans , Carcinoma, Hepatocellular , Genetics , Databases, Genetic , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Liver Neoplasms , Genetics
SELECTION OF CITATIONS
SEARCH DETAIL